What We Need to Know About Biological Risk

- What’s there?
- How many are there?
- How are they distributed in time & space?
- Why are they there?
- What is the mechanism that leads to risk?
Importance of Understanding Bioacoustics

• Sound is an essential component to many (if not all) species of marine vertebrates
 - Used for communication, foraging, navigation, predator avoidance
 - Biological sounds travel across scales up to 1000s of km

• Anthropogenic activities have raised ambient noise levels 1000x in only 40 years
 - What is the impact of current activities on the acoustic ecosystem?
 - How does this effect organisms’ habitat?
 - What are the consequences of expanded development?
Context:
Understand seasonal occurrence of large whale species in the Virginia Offshore Wind Energy Planning Area

Challenge:
Extremely sparse data on baleen whale occurrence in mid-Atlantic waters
Species of Interest

North Atlantic right whale

- ~400 individuals
- Spend summers feeding in Canada, winters calving near Georgia/Florida
- Immense scientific and regulatory concern

Up-call

- Most common right whale vocalization (Parks & Clark 2007)
 - thought to function as contact call
- Can automatically detect using algorithm (e.g., Urazghildiiev et al. 2009)
Right Whale Migration + Wind Areas

- Mass Bay/Cape Cod Bay - Winter/Spring
- Great South Channel - Spring/Summer
- Bay of Fundy - Summer/Fall
- Scotian Shelf - Summer/Fall
- Calving Grounds - Fall/Winter

Migration schematic from WHOI
Marine Autonomous Recording Unit (MARU)

• Archival recorder
• Records for up to ~ 4 months
• Sampling rates up to 64 kHz, typically 2 kHz

• Can be used for presence/absence or deployed in arrays for localization
Passive Acoustic Monitoring

Advantages
- Excellent for detecting vocally active species
 - particularly species that are difficult to see
- Provides pervasive record
- Ability to simultaneously detect multiple species
- Ability to detect other environmental sounds
- Ability to detect anthropogenic activity
- Non-invasive

Disadvantages
- Can’t detect non-vocalizing species
- Many unknown calls
- Challenging to analyze and curate large datasets
Cornell Survey Locations

Norfolk
Virginia Beach
Acoustic Monitoring to Understand Ecology and Biodiversity

Archival Acoustic Data

Automated Sound Analysis and Signal Processing

Detectors/classifiers

Identified Whale Sounds (+ metadata)

Baseline Ecological Records

Right Whale Fin Whale

Temporal

Month

Spatial

Time-stamp and sensor location of sounds of interest becomes the foundation for understanding spatial and temporal occurrence patterns
Results: Right Whale Monthly Occurrence
Conclusions from Virginia Acoustic Survey

New understandings of right whale occurrence
• Present throughout year
• Peak occurrence is Feb/March
• Call most regularly at dusk
• Influence timing of different construction activities

Cornell work ongoing:
• 2nd year of VA data being collected
• Also collecting data at other Atlantic coast sites

Long-term surveys in focal areas can:
• Reduce data gaps
• Further reduce risk to developers
• Help minimize environmental impacts
BRP Staff

Fred Channell
Russ Charif
Harold Cheyne, Ph.D.
Christopher Clark, Ph.D.
Deborah Cipolla-Dennis
Brian Cusimano
Stan DeForest
Christi Diamond
Peter Dugan, Ph.D.
Bobbi Estabrook
Sam Fladung
Linda Harris
Dean Hawthorne, Ph.D.
Kristin Hodge
Amanda Kempf
Tish Klein
Rob Koch
Tim Krein
Ray Mack
Pete Marchetto
Jason Michalec
Janelle Morano
Ed Moore
Charles Muirhead

Collaborators

Virginia Aquarium

Funding

Bureau of Ocean Energy Management

Oceana

IFAW

For more information, contact:
Aaron Rice (arice@cornell.edu)
Brian Cusimano (brian.cusimano@cornell.edu)